超碰人人看人人射-五月婷婷青青综合啪啪-99精产国品一二三产-久久fc2亚洲-精品人妻互换一区二区三区-日韩国产v片一区二区三区免费看-蜜臀99久久精品久久久懂爱-麻豆成人在线免费观看视频-久久九九视频在线观看,伊人久久婷婷亚洲,人妻系列中文字幕大全,日韩久久久久久蜜臀av

產(chǎn)品展示
當(dāng)前位置:首頁 > 全部產(chǎn)品 > 英國Ossila > 碳納米管 > 單壁碳納米管M2013L2 Ossila碳納米管M2012L1 進(jìn)口碳納米管M2013L1

單壁碳納米管M2013L2 Ossila碳納米管M2012L1 進(jìn)口碳納米管M2013L1

單壁碳納米管M2013L2 Ossila碳納米管M2012L1 進(jìn)口碳納米管M2013L1
Ossila廠家直接訂貨、原裝正品、交期準(zhǔn)時、歡迎新老客戶!??!

分享到:

只用于動物實驗研究等

Product List

All our SWNTs come packed as dry powders, which can be dispersed within the user's solvent of choice.

Single-Walled Carbon Nanotube Powders

Product codeM2012L1M2013L1M2013L2
Outer Diameter< 2 nm< 2 nm< 2 nm
Length5-50 μm4-20 μm5-30 μm
Specific Surface Area500-700 m2.g-1400-1000 m2.g-1400-1000 m2.g-1
Purity> 90%> 95%> 95%
MSDS  
Sale Quantities1 g250 mg, 500 mg, 1 g
Packaging InformationLight-resistant bottle

*For larger orders, please us to discuss prices.

Functionalised Single-Walled Carbon Nanotube Powders

Product codeM2014L1M2015L1
Outer Diameter< 2 nm< 2 nm
Length5-30 μm5-30 μm
Specific Surface Area380 m2.g-1380 m2.g-1
Functional GroupCOOHOH
Functional Group Wt.%~ 3%~ 4%
Purity> 90%> 90%
MSDS  
Sale Quantities250 mg, 500 mg, 1 g
Packaging InformationLight-resistant bottle

單壁碳納米管M2013L2 Ossila碳納米管M2012L1 進(jìn)口碳納米管M2013L1

 *For larger orders, please us to discuss prices.

 What are Single-Walled Carbon Nanotubes?

SWNTs are sheets of graphene that have been rolled up to form a long hollow tube, with walls a single atom thick. The existence of thin, hollow carbon tubes has been known about since their first observations by L. V. Radushkevich and V. M. Lukyanovich in 1952, however, the first observations of SWNTs themselves were not until 1976 when M. Endo synthesised a series of hollow carbon tubes via chemical vapour-growth. Wider interest in these low-dimensional materials did not occur until 1991, when two articles were independently published by: i) S. Iijima on the fabrication of multi-walled carbon nanotubes via arc discharge, and ii) J. W. Mintire, B. I. Dunlap, and C. T. White  on the predicted properties of SWNTs. The combination of a simple method for producing SWNTs and the potentially extraordinary properties they exhibit kick-started the growth of a wider research community into carbon nanotubes.

單壁碳納米管M2013L2 Ossila碳納米管M2012L1 進(jìn)口碳納米管M2013L1

Much like graphene, SWNTs have properties that differ considerably to those of bulk carbon (e.g. graphite). The mechanical properties vary significantly depending upon the axis you are measuring with nanotubes having extremely high Youngs Moduli (Up to 1TPa) and tensile strength (Up to 100 GPa) along the longitudinal axis. Along the radial axis, these values are a few orders of magnitude lower.

The electrical properties of carbon nanotubes are dependent upon the orientation of the lattice. The lattice orientation is given by two parameters (n, m). The image to the right shows how the n and m orientations relate to the longitudinal axis of the nanotube and the rotational axis. There are typically three types of nanotubes that can form, these are: the armchair (where n = m), zig-zag (n=x, m=0), and chiral (n=x, m=y).

Carbon nanotubes can exhibit either metallic properties or semiconducting properties, depending upon the orientation of the lattice. Zig-zag and armchair carbon nanotubes exhibit metallic properties, whilst chiral nanotubes can be either metallic or semiconducting depending upon the difference between the n and m units. In addition to this ability to exhibit both metallic and semiconducting electronic structures carbon nanotubes offer exceptional charge carrier mobilities, this is due to the combination of the delocalisation of electrons across the lattice and the small dimensions in the radial axis constraining movement of charge carriers along the longitudinal axis of the tubes.

Lattice parameters of single walled carbon nanotubes

How the lattice parameters relate to the physical structure of carbon nanotubes.

In addition to the electronic and mechanical properties of SWNTs, the thermal properties of these materials exhibit extreme anisotropy. Along the length of the tube, thermal conductivity can be up to 9 times higher than materials such as copper. However - across the radial axis, the thermal conductivity can be 250 times lower than that of copper. Much like its electrical and mechanical properties, SWNT's thermal properties can be severely affected by the presence of defects along the nanotube length. The presence of these defects lead to phonon scattering. When these defects interact with low frequency phonons, scattering can occur - reducing the thermal conductivity.

At the time being, there are limited commercial applications for SWNTs. They are used in composite materials as a method of improving mechanical strength. One of the current limiting factors in improving the range of applications of carbon nanotubes is the ordering of nanotube structure. Current commercial applications utilise disordered bundles of nanotubes, and these bundles have a significantly lower performance than that of individual nanotubes. Potential future uses for carbon nanotubes could be seen in areas such as transparent conducting layers for use in display technologies, conductive wires for nanoelectronics, electrodes in thin-film electronic devices, carbon nanotube yarns for ultra-strong fabrics, thermal management systems, advanced drug delivery systems and many other wide-ranging fields.

 Dispersion Guides

SWNTs are insoluble as prepared. However, through the use of surfactants and ultrasonic probes, it is possible to disperse and suspend small concentrations of nanotubes. For dispersing in aqueous solutions, we recommend the use of sodium dodecylbenzene sulfonate if an ionic surfactant is suitable. If a nonionic surfactant is needed, we recommend surfactants with high molecular weights.

  • Weigh out the desired amount of carbon nanotubes.
  • Mix together your solvent and surfactant of choice at the desired surfactant concentration; this should be below the critical micelle concentration of the surfactant.
  • Add the solvent-surfactant mix to the dry powder and shake vigorously to mix.
  • Either place an ultrasonic probe into the solution, or place the solution into an ultrasonic bath.
    • Be careful about the length of time and power used - because damage to the carbon nanotubes can occur, shortening their average length.
    • The resulting solution will be a mixture of suspended SWNT's and bundles of SWNT's, further sonication will help break up the bundles.
  • To separate out the individual nanotubes in solution from the bundles, the solution should be placed into a centrifuge. If the solution is centrifuged for a longer time and/or at a higher speed, the smaller bundles will be removed, narrowing the distribution of suspended nanotubes.

For functionalised SWNTs, it is possible to disperse them without the use of any surfactants. However, the total concentration of dispersed nanotubes will be lower. A maximum of 0.1mg/ml can be achieved for -COOH and -OH.

Technical Data

General Information

CAS number7440-44-0
Chemical formulaCxHy
Recommended DispersantsDI Water, DMF, THF, Ethanol, Acetone
SynonymsSingle-Walled Carbon Nanotubes, Single-Wall Carbon Nanotube, Carbon Nanotube, SWNT, CNT
Classification / Family1D materials, Carbon nanomaterials, Nanomaterials, Polycyclic aromatic hydrocarbons, thin-film electronics
AppearanceBlack fibrous powder

 

Characterisation

Single Walled Carbon Nanotube Raman SpectraRaman spectra of SWNT samples showing the presence of the G+ and G- band, the D band, and also the radial breathing mode peaks.

 

Single Walled Carbon Nanotube TEM ImageTEM image of an individual SWNT.

 

Single Walled Carbon Nanotube COOH XPS SpectraXPS spectra of the C1s peak for functionalized carbon nanotubes showing the presence of C-C, C-O, and O-C=O bonds.

 

1D Related Products

Single-Wall Carbon Nanotubes

Single-Wall Carbon Nanotubes

Double-Walled Carbon Nanotubes

Double-Walled Carbon Nanotubes

Multi-Walled Carbon Nanotubes

Multi-Walled Carbon Nanotubes

Single-Walled Carbon Nanotube Publications

  • Filamentous Growth of Carbon Through Benzene Decomposition, A. Oberlin et. al., J. Cryst. Growth, 32, 335-349 (1976); DOI: 10.1016/0022-0248(76)90115-9
  • Helical Microtubules of Graphitic Carbon, S. Iijima, Nature, 354, 56-58 (1991); doi: 10.1038/354056a0
  • Are Fullerene Tubules Metallic?, J. W. Mintire et al., Phys. Rev. Lett., 68, 631 (1992); doi: 10.1103/PhysRevLett.68.631
  • Large-Scale Production of  Single-Walled Carbon Nanotubes by the Electric-Arc Technique, C. Journetet. al., Nature, 338, 756-758, (1997); doi: 10.1038/41972
  • Bandgap Fluorescence from Individual Single-Walled Carbon Nanotubes, M. J. O'Connell et. al.,Science, 297, 593-596, (2002); doi: 10.1126/science.1072631
  • Atomic Structure and Electronic Properties of Single-Wall Carbon Nanotubes Probed by Scanning Tunnel Electron Microscope at Room Temperature. 
    A. Hassanien et. al. Appl. Phys. Lett., 73, 3839 (1998); DOI: 10.1063/1.122910
  • Solution Properties of Single-Walled Carbon Nanotubes. J. Chen et. al., Science, 282, 95-98, (1998); DOI: 10.1126/science.282.5386.95
  • Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes. S. M. Bachilo et. al., 298, 2361-2366, (2002); DOI: 10.1126/science.1078727
  • Carbon Nanotubes—The Route Towards Applications. R. H. Baughman et. al. Science, 297, 787-792, (2002) DOI: 10.1126/science.1060928

留言框

  • 產(chǎn)品:

  • 您的單位:

  • 您的姓名:

  • 聯(lián)系電話:

  • 常用郵箱:

  • 省份:

  • 詳細(xì)地址:

  • 補(bǔ)充說明:

  • 驗證碼:

    請輸入計算結(jié)果(填寫阿拉伯?dāng)?shù)字),如:三加四=7

深圳市澤拓生物科技有限公司是國內(nèi)專業(yè)的單壁碳納米管M2013L2 Ossila碳納米管M2012L1 進(jìn)口碳納米管M2013L1廠家,歡迎廣大顧客來電咨詢!
深圳市澤拓生物科技有限公司版權(quán)所有   |   技術(shù)支持:化工儀器網(wǎng)
聯(lián)系電話:0755-23003036   傳真:0755-23003036-807 GoogleSitemap 備案號:粵ICP備17105262號  管理登陸
在線客服
用心服務(wù)成就你我
极品黑丝老师教室自慰呻吟-国语精品 盗摄偷拍-艳妇乳肉亭妇荡乳AV-2022国产精品自在线拍 | 亚洲精品一本四道-2019日韩无码-黑人借宿与少妇羽月希-屁屁影院一区二区 | 口18av在线免费-女人自慰 高清免费网站-99久久精品视香蕉蕉 亚洲色婷婷久久99精品-美女裸体被操 欧美一级黑人-中国熟妇4567-操东北女人的视频-秋霞A级片 | 娇小中国女学生性HD-善良的公与媳HD中字-青青青草国产-国产全黄三级国产全黄三级书 | 国产女性一乱一交一色-自拍偷拍色-性猛交乱婬AV-越南av网站 | 国产美女裸体秘 无遮挡动漫-日本Japanese乳偷乱熟-成人亚洲性情WWW网站-北条麻妃精品99青青久久一本大道 | 97碰撞这里只有精品-无码 有码 日韩 人妻日韩无码免费-欧美日韩精品久久久免费观看-dss少妇PiCs粉嫩BB | 老美女操逼-国产女性无套 免动漫16-韩国三级三级BD在线-老汉人人操 | 中日韩人妻人人爽-偷窥丶少妇丶成熟丶丰-japanavfreeporn-51国产黑色丝袜高跟鞋 | 日哭老师免费在线观看视频-国产一区二区不卡三区-DVD在线播放 国产自偷在线拍精品热-国产AV熟女 | 极品黑丝老师教室自慰呻吟-国语精品 盗摄偷拍-艳妇乳肉亭妇荡乳AV-2022国产精品自在线拍 | 四川BBBB搡BBB搡B1-无码不卡中文字幕一区二区三区-蓝光在线播放观看 久久亚洲视频-婴交从小就做H高 | 一本加勒比HEZYO波多野结衣-完美身材国产欧美日韩-96欧美激情一区二区A片成人-天天舔狠狠爱 | wwwtubecom中国熟女-水野优香中文字幕一区二区-欧美专区在线第十一页-91牛成人欧美大片 | BD韩语高清完整版播放 91久久人妻中文字幕色欲-久久人人玩人妻潮喷内射人人-搞到美女出浆视频-北条麻妃一区在线 | 4p老熟女-国产美女喂奶极品一区二区-国产在线观看不卡性色av免费-超清国产 浪潮AV四虎 | jk制服裸体自慰-国产中文网影院-成人片一级a片免费观看版下载-搞逼黄色 | 国模沟沟裸体美女自卫-a级黄片免费高清在线-日本人妻不卡一区二区三区中文字幕-玩弄少妇一级艳片 | 今天高清无码视频-亚洲国产精品久久久久性色 三级古装片-越C越紧的名器-干赵丽颖日B免费观看 | 女上位打桩榨精在线观看-高潮毛片无遮挡免费高清风月直播-尹人成人-涩综合婷婷久久涩 | 午夜成人无码福利免费视频-性感美女下面被c出-骚虎av-极品人妻videos人妻最新章节列表 | 神马影院日韩av-国产一级高清免费播-大爱色av-后入老师一区二区 免费黄片不打码-大骚B女人-黑人解禁av网站-色妞视频第一页网站 九色蝌蚪黄网-久操视屏-校园教师叉逼视频流白浆-擦B老熟女AV | 超碰18-美女被c视频在线观看3.0mwww-漂亮的人妻黑人解禁-动漫淫交(高H) | jizzcccc中国-午夜无码鲁丝片久久成人18免费网站-精品国产一区二区三区免费久久网-后入美女在线 Japanese在线野狼视频-亚洲2020久久久久久久-干BBB-影音先锋伊人 | 熟女系列15P-D英语高清在线观看 日韩中文字幕高清在线专区-北条麻妃第一次黑人-国产成人午夜精品一区二区三区 99re6这里有精品热视频 | jizzjizzjizz护士高潮-欧美性生交XXXXX-gogogo免费手机高清在线 日韩高清A片-PGD-736誘惑女教师痴女在线观看 | 狠狠干老师-日本学生和黑人XXXX-破处永久页-极品粉嫩午夜福利视频 | 欧美亚视频在线一二三-91色老头-国产菊爆美女在线观看-欧美日韩激情一区二区二区 | futa女女疯狂榨精3D-国产亚洲精久久久久久叶玉卿-高清在线播放观看 精品成人A片久久久久久船舶-安徽妇搡BBBB搡BBBB | 无码双泬中出-四虎老司机-久久桃色精彩绝伦-国产福利精品一区二区无码 | 熟女色竹菊影视-欧洲美妇乱人伦视频网站-玩弄丰满奶水的老师喷流白浆国内,美女-BD英语免费观看韩国 | 国产成人精品一区二区三区无码-DVD日韩免费观看 思思久久99热免费精品6 -桃色视屏-巨色网站 | 尤物自慰国产-漫改无码-美女黄色代马-91精品全国免费观看青青 | 干韩国洁白人妻-五十路ヘンリー冢本XXX-北条麻纪日韩伦理-精品无码西川结衣av | 日韩第十页-女人裸体添荫蒂视频-亚洲1擦菊综合-BD英语高清视频观看 久久影院午夜伦手机不四虎卡 | 丰满白嫩人妖Ts-欲色综合-女人扒开屁股桶爽30分钟高潮-三上悠亚中文字幕久久精品 | 人妖色情网站-国产操逼123区-干干成人网-黑人性在线观看 | 亚洲无吗一级淫片在线观看-10000拍拍拍18勿入免费看-国99精品无码一区二区三区-1080P日韩电影在线 亚洲av永久纯肉无码精品动漫 白嫩美在线自慰-日本迷J灌醉下药视频-久久熟女人妻-女色AV | 依依狼人日日-欧美顶级黃色大片免费-720高清视频播放 日本丰满熟妇人妻av无码区-亚洲三级黄色 三区无码 | 国产男女无套 免费漫画-97无码免费人妻超级碰碰夜夜-国产精品一区久久-色射综合 | 男女青青影院-日韩黄3atv 一级a片片2019-丰满老熟女毛片-在线无码精品秘?入口四色 |