超碰人人看人人射-五月婷婷青青综合啪啪-99精产国品一二三产-久久fc2亚洲-精品人妻互换一区二区三区-日韩国产v片一区二区三区免费看-蜜臀99久久精品久久久懂爱-麻豆成人在线免费观看视频-久久九九视频在线观看,伊人久久婷婷亚洲,人妻系列中文字幕大全,日韩久久久久久蜜臀av

供求商機(jī)
您現(xiàn)在的位置:首頁(yè) > 供求商機(jī) > Ossila材料PTB7 CAS:1266549-31-8 PTB7

Ossila材料PTB7 CAS:1266549-31-8 PTB7

Ossila材料PTB7 CAS:1266549-31-8 PTB7
點(diǎn)擊放大
供應(yīng)數(shù)量:
3452
發(fā)布日期:
2025/11/6
有效日期:
2026/5/6
原 產(chǎn) 地:
已獲點(diǎn)擊:
3452
產(chǎn)品報(bào)價(jià):
  [詳細(xì)資料]

只用于動(dòng)物實(shí)驗(yàn)研究等

Batch Information

Batch No.MwPDStock Info
M21118,0001.75Sold out
M212> 40,0002.0Sold out
M21385,0002.0In stock

Ossila材料PTB7 CAS:1266549-31-8 PTB7

Applications

PTB7 for high-performance organic photovoltaics.

Poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]], more commonly known as PTB7.

In stock now for immediate dispatch worldwide.

PTB7 gives some of the highest reported efficiencies for polymer:fullerene solar cells due to its extended absorption into the near infra-red and lower HOMO level. Together with our complete package of processing information, PTB7 becomes a quick and easy way to improve device efficiencies. This represents a cost-effective method to increase performance and impact of devices and data for a wide range of OPV related research.

At typical concentrations for spin-coated devices of 10 mg/ml, a standard batch of 100 mg will produce 10 ml of ink - enough to coat 200 of Ossila's standard sized substrates even assuming 50% ink loss during preparation and filtration. At concentrations of 1 mg/ml (more typical for ink-jet printing and spray coating) up to 100 ml of ink can be produced.

In a standardised reference architecture (using a PEDOT:PSS hole interface and Ca/Al electron interface) we have shown this batch to give a PCE of 6.8% (see data sheet below) and up to 7.4% using PFN. By using new interface materials and architectures PTB7 has been shown to reach efficiencies of 9.2% PCE in the literature [1,2].

The high solubility in a wide range of solvents makes ink preparation and filtration simple, and PTB7 is one of the easiest materials we have ever worked with (simply shake it to dissolve). This also makes it an excellent candidate for a variety of coating techniques including ink-jet printing, spray coating and blade coating.

For information on processing please see our specific fabrication details for PTB7, general fabrication video, general fabrication guide, optical modelling paper on our standard architecture [3], or us for any additional help and support.

References (please note that Ossila has no formal connection to any of the authors or institutions in these references):

  • [1] Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure Zhicai He et al., Nature Photonics, V 6, p591–595 (2012).
  • [2] Simultaneous Enhancement of Open-Circuit Voltage, Short-Circuit Current Density, and Fill Factor in Polymer Solar Cells Zhicai He et al., Advanced Materials, V 23, p4636–4643 (2011).
  • [3] Optimising the efficiency of carbazole co-polymer solar-cells by control over the metal cathode electrode Darren C. Watters et al., Organic Electronics, V 13, p1401–1408 (2012)
  • [4] Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77%, N. Gasparini et al, Nat. Energy, 16118 (2016); doi:10.1038/nenergy.2016.118 (Ossila PTB7 was featured in this paper).

Ossila材料PTB7 CAS:1266549-31-8 PTB7

Datasheet

PTB7 chemical structureChemical structure of PTB7; Chemical formula (C41H53FO4S4)n.

Specifications

Full namePoly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]]
SynonymsPTB7
CAS number1266549-31-8
Absorption670 nm (CH2Cl2), 682 nm (film)
SolubilityChloroform, Chlorobenzene, o-DCB

 

Usage Details

Inverted Reference Devices

Reference device were made on batch M211 to assess the effect of PTB7:PC70BM active layer thickness on OPV efficiency using an inverted architecture with the below structure. These consisted of the below structure and were fabricated under inert atmosphere (glovebox) before encapsulation and measurement under ambient conditions.

Glass / ITO (100 nm) / PFN (6.5 nm) / PTB7:PC70BM (1:1.5) / MoOx (15 nm) / Al (100 nm)

For generic details please see the general fabrication guide and video. For specific details please see the below condensed fabrication report which details the optical modelling and optimisation of the multilayer stack.

Previously it has been shown that PFN of around 6.5 nm gives optimum performance [1-3,P021] while modelling has shown that an Al back cathode gives higher performance than Ag when used with MoOx [4].

The PTB7:PC70BM solution was made in chlorobenzene at 25 mg/ml before being diluted with 3% diiodooctane (DIO) to promote the correct morphology.

Active layer thicknesses of 75 nm, 90 nm and 105 nm were chosen corresponding to the lower, middle and upper end of the "thin film" absorption peak of a typical stack as predicted by optical modelling [1]. For each of these thickness a total of four substrates was produced, each with 4 pixels and the data presented below represents a non-subjective (no human intervention) analysis of the best 75% of pixels by PCE (12 pixels for each condition).

An additional two substrates were also prepared with a methanol wash to help remove the DIO as has been reported in the literature to help improve performance[5].

Overall, the maximum efficiency of 7.2% average PCE (7.4% maximum) was found at 75 nm film thickness.

 

Efficiency for different PTB7 spin speeds - inverted architectureJsc for different PTB7 spin speeds - inverted architectureVoc for different PTB7 spin speeds - inverted architecture Fill factor for different PTB7 spin speeds - inverted architectureFigure 1: PCE, Jsc, Voc and FF for inverted architecture devices at different spin speeds. Data shown is averaged with max and min overlaid with filled circles (please see note of Dektak measurements). As previously reported [1,2,3], films of approximay 90 nm give the highest performance with greater Jsc and only minor loss in fill factor.

 

PTB7 JV Curve for inverted architecture
Figure 2: The JV curve for the best performing device - inverted architecture.

 

Note 1: Dektak Thickness calibration

We normally calibrate thin films by use of a Dektak surface profiler, however the use of DIO results in an enhanced level of uncertainty in the film as the DIO will take several hours to fully dry under normal conditions and is likely to undergo some slight further shrinkage when placed in vacuum. The DIO can also be removed by baking the substrate on the hotplate at 80°C for about 10 mins which can be useful for doing quick measurements but also drives excess phase separation between the polymer and PCBM making it unsuitable for device work.

Note 2: Effect of epoxy

Due to the very high solubility of the PTB7 it was noted during fabrication that the film changed colour when in contact with the EE1 encapsulation epoxy in liquid form for extended periods indicating that there was some miscibility. Inspection of the active areas underneath the top cathode indicated that the epoxy had not seeped into the active area before curing and device metrics indicate that this did not appear to affect performance. However, we would recommend minimising contact time between the epoxy and PTB7 films before UV curing.

 

Fabrication

Substrates and cleaning

  • Pixelated Cathode substrates (S173)
  • 5 mins sonication in hot Hellmanex III(1 ml in beaker)
  • 2x boiling water dump rinses
  • 5 mins sonication in warm IPA
  • 2x dump rinses
  • 5 mins sonication in hot NaOH
  • Dump rinse in boiling water
  • Dump rinse in water
  • Stored in DI water overnight and until use

PFN Solution

  • Dissolved at 2 mg/ml
  • Acetic acid dissolved 1:9 in methanol to make stock solution
  • 2 μl/ml of acetic added to solution
  • Stirred for 30 mins
  • Filtered through 0.45 μm PVDF filter

PFN Test Films

  • PFN Test film initially spun at 500 rpm and gave 20 nm
  • Second test film spun at 1000 rpm and gave 16 nm
  • Thickness was extrapolated to 6.5 nm at 6000 rpm

Active Layer Solution

  • Fresh stock solutions of PTB7 (Ossila M211) made on at 10 mg/ml in CB and dissolved with stirbar for 1 hour
  • Mixed 1:1.5 with dry Ossila 99% C70 PCBM to make overall concentration of 25 mg/ml and dissolved with stirbar for 1 hour
  • Old stock solution of 1,8 Diiodooctane mixed 1:1 with CB to make measuring out small quantities easier
  • DIO/CB mixture added to solution to give overall DIO amount of 3%

Active Layer Test Films

  • Test film spun at 1000 rpm for 2 mins using unfiltered solution and dried using methanol before Dektak
  • 1000 rpm gave approximay 85 nm

Active layers

  • Devices spun using 30 μl dynamic dispense (20 μl gave only moderate wetting/coverage)
  • Non methanol devices spun for 2 mins
  • Methanol devices spun for 30 seconds, then coated with 50 μl methanol by static dispense then spun at 2000 rpm for 30 seconds.
  • Cathode wiped with CB
  • Vacuum dried in glovebox antichamber for 20 mins

Evaporation

Left in chamber over the weekend and evaporated with the below parameters.

  • 15 nm MoOx at 0.2 ?/s
  • 100 nm Al at 1.5 ?/s
  • Deposition pressure

Encapsulation

  • As standard using Ossila EE1, 30 mins UV in MEGA LV101

Measurements

  • JV sweeps taken with Keithley 237 source-meter
  • Illumination by Newport Oriel 9225-1000 solar simulator with 100 mW/cm2 AM1.5 output
  • NREL certified silicon reference cell used to calibrate
  • Lamp current: 7.8 A
  • Solar output at start of testing: 1.00 suns at 25°C
  • Solar output at end of testing: 1.00 suns at 25°C
  • Air cooled substrates
  • Room temperature at start of testing: 25°C
  • Room temperature at end of testing: 25°C
  • Calibrated aperture mask of size 0.256 mm2

 

Standard (Non-inverted) Reference Devices

Reference device were made on batch M211 using a standardised architecture for comparative measurements using Ossila standard substrates and materials. These consisted of the below structure and were fabricated under inert atmosphere (glovebox) before encapsulation and measurement under ambient conditions.

Glass / ITO (100 nm) / PEDOT:PSS (30 nm) / PTB7:PC70BM (variable) / Ca (2.5 nm) / Al (100 nm)

For generic details please see the fabrication guide and video. For specific details please see the below condensed fabrication report and also Watters et al. [3] which details the optical modelling and optimisation of the multilayer stack.

For this standard reference architecture an average PCE of 6.6% was achieved for the optimised thickness with a peak efficiency of 6.8%. Note that no other optimisation was performed (blend ratio, DIO concentration, drying conditions etc) and so further small improvements may be obtained by varying these conditions and significant improvements obtained by using alternative interface materials [1,2].

Efficiency for different PTB7 spin speeds - Standard architecture Jsc for different PTB7 spin speeds - Standard architecture Voc for different PTB7 spin speeds - Standard architecture Fill factor for different PTB7 spin speeds - Standard architectureFigure 3: PCE, Jsc, Voc and FF for standard architecture devices at different spin speeds. Data shown is averaged with max and min overlaid with filled circles (please see note of Dektak measurements). As previously reported [1,2,3], films of approximay 90 nm give the highest performance with greater Jsc and only minor loss in fill factor.

 

PTB7 JV curve for standard architecture
Figure 4: The JV curve for the best performing device - standard architecture.

 

Note 1: Dektak Thickness calibration

We normally calibrate thin films by use of a Dektak surface profiler, however the use of DIO results in an enhanced level of uncertainty in the film as the DIO will take several hours to fully dry under normal conditions and is likely to undergo some slight further shrinkage when placed in vacuum. The DIO can also be removed by baking the substrate on the hotplate at 80°C for about 10 mins which can be useful for doing quick measurements but also drives excess phase separation between the polymer and PCBM making it unsuitable for device work.

Note 2: Effect of epoxy

Due to the very high solubility of the PTB7 it was noted during fabrication that the film changed colour when in contact with the EE1 encapsulation epoxy in liquid form for extended periods indicating that there was some miscibility. Inspection of the active areas underneath the top cathode indicated that the epoxy had not seeped into the active area before curing and device metrics indicate that this did not appear to affect performance. However, we would recommend minimising contact time between the epoxy and PTB7 films before UV curing.

 

Fabrication

Substrates and cleaning

  • Pixelated Cathode substrates (S173)
  • 5 mins sonication in hot Hellmanex (1 ml in beaker)
  • 2x boiling water dump rinses
  • 5 mins sonication in warm IPA
  • 2x dump rinses
  • 5 mins sonication in hot NaOH
  • Dump rinse in boiling water
  • Dump rinse in water
  • Stored in DI water overnight and until use

PEDOT:PSS layer preparation

  • Clevios AI 4083
  • Filtered into vial using Whatman 0.45 μm PVDF filter
  • Spun 6000 rpm for 30 seconds (30 nm)
  • Dynamic dispense of 20 μl using pipettor
  • IPA cathode strip wipe and labelled
  • Put straight onto hotplate at 160°C as soon as cathode wiped and labelled
  • Transferred to glovebox when all samples spun.
  • Baked in glovebox at 150°C for 1 hour

Active layer Solution Preparation

  • Fresh stock solutions of PTB7 at 10 mg/ml in CB and shaken to dissolve
  • Mixed 1:1.5 with dry Ossila 99% C70 PCBM to make overall concentration of 25 mg/ml
  • 1,8 Diiodooctane mixed 1:1 with CB to make measuring out small quantities easier
  • DIO/CB mixture added to solution to give overall DIO amount of 3%

Active layer spin casting

  • Devices spun for 2 mins using 25 μl dynamic dispense
  • Cathode wiped with chlorobenzene
  • Left to dry in glovebox for 2 hours but colour indicated they were still slightly wet
  • Dried in vacuum in glovebox antichamber for 10 mins to remove DIO

Evaporation

Left in chamber over the weekend and evaporated with the below parameters.

MaterialCa
Base pressure8.0 E-8 mbar
Dep start pressure1.7 E-7 mbar
Max pressure2.7 E-7 mbar
Thickness2.5 nm
Rate0.2 ?/s
MaterialAl
Base pressure7.0 E-8 mbar
Dep start pressure6.0 E-7 mbar
Max pressure7.0 E-7 mbar
Thickness100 nm
Rate1.0 ?/s

 Encapsulation

  • As standard using Ossila EE1, 30 mins UV in MEGA LV101

Measurements

  • JV sweeps taken with Keithley 237 source-meter
  • Illumination by Newport Oriel 9225-1000 solar simulator with 100 mW/cm2 AM1.5 output
  • NREL certified silicon reference cell used to calibrate
  • Lamp current: 7.8 A
  • Solar output at start of testing: 0.99 suns at 25°C
  • Solar output at end of testing: 1.00 suns at 25°C
  • Air cooled substrates
  • Room temperature at start of testing: 21°C
  • Room temperature at end of testing: 21°C
  • Calibrated aperture mask of size 0.256 mm2

 

想了解更詳細(xì)的產(chǎn)品信息,填寫(xiě)下表直接與我們聯(lián)系:

留言框

  • 產(chǎn)品:

  • 您的單位:

  • 您的姓名:

  • 聯(lián)系電話:

  • 常用郵箱:

  • 省份:

  • 詳細(xì)地址:

  • 補(bǔ)充說(shuō)明:

  • 驗(yàn)證碼:

    請(qǐng)輸入計(jì)算結(jié)果(填寫(xiě)阿拉伯?dāng)?shù)字),如:三加四=7
深圳市澤拓生物科技有限公司 專業(yè)提供:大小鼠解剖器械包,瑞士Sipel真空泵,美國(guó)EMS電鏡耗材
深圳市澤拓生物科技有限公司版權(quán)所有   |   技術(shù)支持:化工儀器網(wǎng)
聯(lián)系電話:0755-23003036   傳真:0755-23003036-807 GoogleSitemap 備案號(hào):粵ICP備17105262號(hào)  管理登陸
在線客服
HD韩国电影在线观看 综合av人妻一区二区三区-国产东北露脸精品视频-伊人AV导航-国产98在线 | 日韩 | 欧美 | 北条麻妃系列黄色片-国产毛多水多女人A片-xxx.原神污片免费看-女性喷液过免费视频老牛影视 | 自慰喷潮在线-一级A片人与鲁-色女仆影院-日韩电影在线一区在线观看平台中 | 成人精品自拍偷拍-女人阴蒂被舔全过程a片免费-97国产综合色产在线视频 -中文字幕-第1页 - 色屁屁影院 - x300x.com | DVD完整版观看 亚洲麻豆-国产cosplay资源网站在线-精品久久偷拍-日本人妻推油 | 亚洲日韩欧美国产brandistep-中国老熟女重囗味hdxx-黑人泄欲一区二区三区-电影一区二区日韩电影 自拍偷拍视频43-黄片hhh-狠牛影视在线一区-久久精品视频4242 | 亚洲第九页夜-(高H,高c)开荤黑人-亚洲女同色情-五十路老熟道中出在线播放 | 国产按摩店三级毛片-JJZZJZZJZZ成熟人妻-大香蕉久久伊人网-日韩美女裸交 | 北条麻妃喷水-黑人丝袜操逼18p-comporn超碰-国产青青久久视频 | 北条麻妃人妻女教师2-大香蕉伊在人线-亚洲午夜精品久久久久久浪潮-伊人按摩电影 | 厨房猛烈撞击白丝麻麻-youjizzjapan-日本女优爱爱-国产一级日本三级岁酱 | 亚洲va中文字幕无码毛片久久-无码A级免费视频-日韩色情毛片-高清一区二区 | www免费视频在线观看播放-成年视频xxx在线观看-台湾佬亚洲色图-亚洲人成网站77777在线播放 | 大桥未久强制中出4-国产片侵犯亲女91-涩涩视屏-娇妻互换男人猛烈进入 免费妞干网 | 最好的迅雷电影下载网,分享最新电影,高清电影、综艺、动漫、电视剧等下载!-丝袜av在线丝袜av天堂国产-日本少妇ⅩXXX无码妖精视频-DVD高清完整版播放 日韩欧美精品一区二区三区在线 | 偷拍 的搜索结果 - 91n-avchinese-东北女人999精品-又大又粗又黄又爽孕妇 | 淫熟交尾竹内纱里奈-长筒美女被操出白浆-性感小唯西川惊人的口交和性-日本xxxxxxx49 | 91精品国产乱码在线观看入-情人教我操逼av-靠逼网站在线观看-色欲狠狠躁天天躁无码中文字幕 | cc视频欧美黄色一级毛片-91女人18毛片水多国产-国产精品国色综合久久 国产日本免费-BD韩语免费播放 免费秋霞一级 | 一级黄片日女人-屁屁影院CCYYCOM国产绿帽-日本人妻中出BBwBBw-免费香焦依人视频 | 欧洲人妻-HD超清在线观看 国产成人真人在线-西西888WWW大胆无码-Chinese大学生啪啪HD | 成人黄色网站在线播放视-BD完整版观看 99热国产在线观看-成年女人毛片免费观看不卡-4k在线观看视频 热久久这里只有精品 | 自慰100部免费A片-孕妇内谢XXXXX在线HD-女性向边被躁边讲荤话-久久精品国产福利国产秒 | 香蕉狼人狠狠干-欧美日韩一区二区综合在线视频-国模精品一区二区三区-黑人添荫道囗吃奶视频 | 羞羞羞下面好紧爽 视频-国产精品羞羞答答-与子乱对白在线播放单亲国产-女女综合网 | 欧美性史99久久久久久久-又粗又硬的毛片AAAAA片-老师张开腿让我c漫画-白虎美女人妻 | 丰满熟女桃子冰老师在线观看-手机正片国语版中文版,肏屄视频一级A,男生鸡捅女生逼,西瓜视频下载在线观看-狼人干狠狠干-久久这里是精品 精品久久久中文字幕二区 | 国产村长按摩女在线-一本久色-熟女搜索结果-91Porn-超清手机在线观看 成人h动漫精品一区二区无码 | WWW.TUSY.COM-4K岛国无码HEYZO-日本又亲又摸又黄的视频-玩弄丰满奶水的老师喷流白浆动漫 | 一级片中文字幕-日韩精品色哟哟-欧美色图19p-欧美丰满少妇XXXXX高潮小说 | 欧美老妇BB-HXXXXX-国产91高潮叫床ThePorn-量近2019中文字幕在线视频 | 欧美黑粗硬大臊腚视频-国产精品77777竹菊影视小说-东北探花专业干老外-黑人精品--一区二区 | 国产美女自慰在线观看-tube8国产性爱-越南娇小性爽HD学生-狠狠精品干练久久久无码中文字幕 | 中国美女处内谢-大陆欧美日韩-沟厕精品清晰女厕正面-成年免费在线视频 乳欲人妻奶水 | 寂寞人妻友田真希被中出-免費成人視頻-XNXXCOM-中国成人精品-鸥州顶级黄片段试看 | 欧美日韩在线视频免费完整-一级一级a一级a爱片免费兔兔软件-一不小心捡到爱在线观看 粉嫩高中生穿着制服自慰-中国女人自慰网站 | 六色成人网站-亚洲av午夜福利精品一区-超碰chaoporn在线-女人裸体无码 | 夜夜躁日日躁狠狠躁综合网-天堂岛国av无码免费无禁网站- BD国语完整版观看 精品福利视频免费一区二区-操穴视频日本 | 欧美a色爱欧美综合v-.asian美白裸体女pics-水蜜桃4美国伦理-日韩毛片AV-女同自慰A片免费观看-森泽佳奈持续高潮40分钟 | EEUSS鲁丝片Av无码安全直达-国产真实偷乱视频在线观看-18禁美女裸体自慰网站-偶偶福利电影 | 日本人人操人人乐-操朝鲜女人-最近中文字幕m v在线-JizZXXXXXXXXXX |